
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 8, 997-1010 (1988) 

FINITE ELEMENT COMPUTATION OF A TURBULENT 

FACING STEP 
FLOW OVER A TWO-DIMENSIONAL BACKWARD- 

A. AUTRET AND M. GRANDOTTO 
Centre XEtudes NuclCaires de Cadarache, DREISTREILMA. F-13108 St Paul lez Durance Cedex, France 

AND 

1. DEKEYSER 
Institut de Mtcanique Statistique de la Turbulence, Unit6 AssociCe au C. N .  R. S .  numCro 130, 

I2 Avenue Geniral Leclerc, F-I3003 Marseille, France 

SUMMARY 

This paper is devoted to the computation of turbulent flows by a Galerkin finite element method. Effects of 
turbulence on the mean field are taken into account by means of a k--E turbulence model. The wall region is 
treated through wall laws and, more specifically, Reichardt's law. An inlet profile for E is proposed as a 
numerical treatment for physically meaningless values of k and E .  Results obtained for a recirculating flow in 
a two-dimensional channel with a sudden expansion in width are presented and compared with exper- 
imental values. 
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INTRODUCTION 

The accurate prediction of the behaviour of a turbulent flow in complex geometries is the basic 
task of hydraulicians in the nuclear sphere. Accuracy is a very important feature of a numerical 
model which consists of a turbulence model and a computational method. For example, the 
failure to predict the existence of a recirculating zone or the precise location of a reattachment 
point could have dramatic consequences on the performance of a mechanical system. 

With respect to the computational method a great deal of attention has been given in recent 
years by many researchers to the finite element method.'-2 Specifically, the Galerkin finite 
element method associated with a penalty function approach has been shown to be very accurate 
for solving the Navier-Stokes equations. 

In the context of turbulent flows the task is more difficult insofar as it is necessary to use a 
turbulence model to describe the physical behaviour of the fluid. The model consists of a set of 
partial differential equations, algebraic relations and boundary conditions. The main expected 
aim is to correctly depict the spatial variation of the effective dynamic viscosity which is necessary 
for solving the momentum equations. This can be achieved by implementing models comprising 
zero, one, two or more equations. 
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The present paper deals with the numerical computation of a turbulent flow by way of a two- 
equation model using one partial differential equation for the turbulent kinetic energy and 
another for the turbulent energy dissipation rate. The closure of this set of partial differential 
equations is then performed by algebraic relations. It will be shown how this standard turbulence 
model cannot account for all physical situations. Moreover, the mean field is not very well 
predicted when the model is used in dissociation from physical considerations. 

THEORETICAL BASIS---TURBULENCE MODEL 

The classical Navier-Stokes equations for a viscous, incompressible, steady, Newtonian, iso- 
thermal, two-dimensional flow, with external forces neglected, can be written as 

in which { i , j }  = { 1,2} and repeated indices require summation, U i  denotes the component of the 
mean velocity in the xith co-ordinate direction of a Cartesian system (xl,xz), p is the density and 
f i j  is the mean viscous shear stress tensor defined by 

f i j =  -PG, j+p(u i , j+  Uj,i), (3) 
where P denotes the mean pressure, d i j  the Kronecker symbol and p the molecular viscosity. The 
quantities p and p are assumed to be constant. 

The turbulent Reynolds shear stress pG (the overbar denotes a time average) is often 
connected to the mean field by means of the generalized Boussinesq hypothesis 

(4) 
~ 

- p  u i u j = ~ T ( U i , j  + Uj,  J - + p k h i j ,  

in which pT is the dynamic eddy viscosity and 

is the turbulent kinetic energy. 
Introducing the new variable 

and employing (4), equation (1) can be written 

where 

Tij= --P*di j+pL,(Ui , j+ U j , i )  

with 

CLe = P + CLT (9) 

In the present paper, following Jones and Launder3 and nea.rly all subsequent workers, pT will 
the effective dynamic viscosity. 

be expressed in terms of the turbulent kinetic energy k and the turbulent energy dissipation rate 
via the relation 

PT = cCp k2j&.  (10) 
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The two variables k and E are deduced from their own transport eq~a t ions :~  

in which L denotes the turbulent length scale defined by 

L = C D ( ~ ~ ’ ~ / & )  (13) 

s = ui, j (  ui, j + u j ,  i). (14) 

and S is the term 

In the set of equations (10H13) the quantities mk, me, cia, cZE, c, and cD are considered to be 
constant. Following Jones and L a ~ n d e r , ~  the values used are 1.00, 1.30, 1.44, 1.92,0.09 and 1.00 
respectively. 

Because of the elliptic nature of the system of partial differential equations (l), (2), (ll), (12), 
boundary conditions are required on the whole boundary of the domain. This point will be 
treated later. 

COMPUTATIONAL METHOD 

The numerical technique employed to obtain approximate solutions of the system is a standard 
Galerkin finite element method (GFEM) with a penalty function a p p r ~ a c h . ~  This last method 
allows us to take into account the incompressibility condition (2) without explicitly employing 
Lagrangian multipliers. The pressure values are then recovered from the velocity field by 

in which A: denotes the penalty parameter. Quadrilateral bilinear Lagrangian Q 1/PO elements are 
used for each variable U ,  k and E with reduced integration of the penalty matrix.’ 

Finally the resulting matrix equations which are to be solved are of the form 

IC(U) + D ( p T )  + PI u =J’,  (16) 

[c( u) + ( s/mk)D(pT) + K(k,  L)1 = pK(PT, u) u, (17) 

[c(u) + D(pT) + E(k,  &)I =PE(pT, u, u, (18) 

where C is the matrix of the convective terms, D is the matrix of the diffusive terms, P is the 
penalty matrix, K ,  E are the matrices of the dissipative terms and PK, PE are the matrices of the 
productive terms. The resolution of the system is performed after linearization of non-linear 
terms, and the resulting uncoupled structure allows the use of an iterative technique for solving 
each equation in isolation.6 

WALL LAWS 

The k--E model equations are elliptic and thus require conditions on the whole boundary iX2 of the 
mathematical domain of integration Q. However, in the case of walls it is physically meaningless 
to integrate the k--E model equations up to the wall because they are not valid in the vicinity of the 
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wall. To obviate the necessity to use a modified model in this region of the flow, a fictitious 
boundary is generally located inside the flow at a distance xZp from the real wall. Then universal 
laws are used to describe the behaviour of the fluid on this fictitious boundary. This so called wall 
function method can be obtained by assuming that the near-wall region is in local energy 
equilibrium so that the non-dimensional velocity profile is logarithmic and the turbulent shear 
stress is constant. Thus 

in which 

with u* the friction velocity defined by 

z, the wall shear stress, K the von Karman constant and E the roughness parameter. Usually K 

and E are taken to be equal to 0.41 and 9 respectively. 
Once u* is evaluated, near-wall values of k and E can then be computed from the following 

 relation^:^ 

For x: < 5 the following linear law is generally employed: 

u+ = x i ,  

whence 

Finally the buffer layer, defined by 5 6 x: < 30, can be taken into account numerically by the 
datum of some experimental measures or by connecting it wnth the outer regions. 

MODEL SIMULATION 

Preliminary computations were performed in a two-dimensional channel with parallel plates and 
the results were compared with the measurements of Comte-13ellot.8 Very good agreement was 
observed for mean and turbulent quantities for three Reynolds  number^.^ Model simulations 
were achieved for flow over a two-dimensional backward-facing step. The calculations simu- 
lated the experiments of Westphal et a1.” in which the Reynolds number Re,, based on the step 
height, reaches 42000. The geometrical configuration of the flow, the physical data and the 
boundary conditions imposed for the calculations are depicted in Figure 1. 

In the inflow cross-section the U-velocity and k profiles an: the experimental ones while the 
cross-flow velocity Vis set to zero. Since there is no satisfactory experimental profile available for 
E,  an estimated profile has been generated using the following relation,’ obtained by assuming a 
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x1 0 

Figure 1 

Geometrical data: 
H = 5.08 cm; 

=W 

H’ =$ H = 7.62 cm; L= 20 H = 1.016 m 

x = 5.37 mm; xa0 ,,,, = 3.65 mm; x2, ,,,, = 1 mm 

Physical parameters: 
p = 1.208 kg/m3 
p= 1.437 low5 kg/ms 

Boundary conditions: 
* on (I): u, k ,  E: experimental values 

mixing-length hypothesis and a universal logarithmic profile for U: 

K X , ~ ~  
E = C,-, 

L: u* 

in which L, is the Nikuradse mixing-length. 

large class of problems. 
It has been showng that this relation for the E profile is almost general and can be applied to a 

For the outflow cross-section it was assumed: 

In the wall region the standard non-dimensional velocity relations (18H22) are replaced by 
Reichardt’s law,’ which can be expanded as 
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The validity of this relation for every positive x: is the main advantage of this analytical 
formula in comparison with the standard laws. The relation (27) is treated numerically by a 
classical fixed-point method accelerated by a fourth-order over-relaxation,' giving u,. However, 
for x i  < 2 the numerical scheme becomes unstable and has to be replaced by the explicit linear 
law (22). Very small values of x l  could be encountered, for example, near a reattachment point in 
a recirculating zone. In the two cases the near-wall values of k and E are then recovered by (22). 

Numerical predictions were carried out using a non-uniform mesh employing 27 x 43 Ql/PO 
elements (28 x 44 nodes). The penalty parameter was equal to lo6 and about 25-30 fixed-point 
iterations were necessary to reach the expected convergence criterion (0.5% on each variable U i ,  k 
and E) .  

All calculations were performed on a CRAY-XMP computer; about 110 s (CPU time) are 
sufficient for a complete numerical investigation. 

RESULTS 

The first attempts were achieved by using the profile of k measured by Westphal et d . ' O  at the 
inflow cross-section of the geometrical configuration. Nevertheless, this profile yields a very low 
turbulence intensity, about @3%, on the axis of symmetry in the entrance channel. With this k 
inlet profile, physically meaningless negative values of k appear in the flow core, emphasizing the 
non-realizability of the k--E model. It seems impossible to obviate this difficulty in a natural 
manner. The onset of negative values of k seems to be connected with small values of the 
turbulence Reynolds number 

Re, = k2 /v  E (28) 
at  the inflow cross-section. 

Even a clipping method was not efficient for solving this difficulty. For instance, when the 
iterative procedure leads to negative values of k they are put to a small preassigned positive 
quantity; another way of clipping consists of keeping the (positive) values obtained at the previous 
iteration (see also Betts and Haroutunian12). Nevertheless, if the level of k (at the inflow cross- 
section) is too low, negative values will be always generated by the next iterations. This proves 
that the k--E model cannot take into account all physical situations even with realistic boundary 
conditions. More precisely, it can only reproduce physical configurations in which boundary 
conditions are consistent with the model itself. 

In the present work the profile of k at the inflow cross-section has been replaced by the 
measured profile of Comte-Bellot' obtained in a two-dimensional channel; with this k profile the 
turbulence Reynolds number is quite similar to the former one except in the vicinity of the axis 
where the turbulence intensity is significantly higher. With these new conditions the convergence 
presents no more difficulty but the numerical result downstream of the step differs significantly 
from experimental results. In particular the experimental reattachment length found by Westphal 
et al." is about 7-33 whereas the numerical estimate is 5.22. This underprediction of the 
reattachment length by the k--E model has often been Changing either the inflow 
section Reynolds number or the inflow section turbulent field did not lead to a more realistic 
result for the mean field. More generally there is no external action large enough to influence the 
location of the reattachment point strongly. Numerically it is very clear that the reattachment 
length depends strongly on the diffusive terms of the momentiim equation: the more important 
they are, the shorter the reattachment length is. The magnitude of these terms was reduced by 
arbitrarily setting the constant c,, equal to 0045. The resulting numerical reattachment length was 
7.27, in close agreement with experiment. 
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A more satisfactory way to solve this problem would be to express c ,  as a function which takes 
into account local parameters of the turbulence. For example, for thin shear layers Rodi” 
suggested the following dependence of c,  on the ratio H/E, where ll is the production of k: 

where tl and o are new constants. 
The expression (29) can be deduced from the classical algebraic stress model relations, which 

are based on the assumption that u,u, /k  varies only slowly across the flow and that the transport 
of u luz  is proportional to the transport of k. 

However, it is very difficult to assign precise values to the new constants. As recommended by 
Rodi,’’ w is taken between 2.50 and 2.80 and then CL is computed so that c, is equal to 0.09 when 
the flow is in local equilibrium. Corresponding to w equal to 2.50 and 2.80 are values of ct of 0598 
and 0.549 respectively. Corresponding estimates of the reattachment length are 8.33 and 8-53 
respectively. Although the estimates are more satisfactory than for a k--E model with a constant c,, 
the sensitivity of the reattachment length to the change in the constants CI and E is quite high. 

~ 

~ 

COMPARISONS 

Comparisons between numerical predictions and experimental profiles have been performed at 
different test sections located at x , / H  = 4, 8, 12 and 20 (Figure 1 j. 

In Figures 2-9 results obtained with c,  =0.045 are identified by the letter A, those with cp  =009 
by B and those with a variable c,  (and w = 2.500, a= 0.598) by C. Experimental results are shown 
by crosses. 

In Figures 10 and 11 the full curves and the crosses represent numerical predictions for 
c,  = 0.045 and experimental results respectively. 

Velocity profiles 

Predictions of the dimensionless longitudinal velocity component U/U,, ,  are plotted in 
Figures 2-5 against the dimensionless ordinate x J H ,  where H is the step height. 

For the modified model with C ,  = 0.045 very good agreement can be observed in the recircu- 
lating region. Discrepancies become more prominent as the outflow section is approached, but 
they are relatively easy to try to explain. Downstream of the reattachment point the attached 
layer assumes the structure of a flat-wall turbulent boundary layer for which a suitable value of 
the constant c,  is the standard one. This point is confirmed by the behaviour of the standard 
model at the last two stations (Figures 4 and 5) in the recovery region. In contrast, the comparison 
is worse for the upper region. 

Finally it can also be observed that the use of relation (29) for C ,  does not improve the outflow 
cross-section profile very much, even if the predicted location of the maximum is improved. 

Turbulent kinetic energy 

Comparisons for non-dimensional k profiles are plotted in Figures 6-9. 
As in the case of the mean velocity, the predicted maximum values are close to the experimental 

values. Once more, for the modified model, agreement is good upstream of the reattachment point 
whereas discrepancies emerge elsewhere. These can be observed in the upper region ( x , / H  > 0.7), 
which corresponds to a jet region where the turbulent levels are under-evaluated. It can be seen 
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.~ 

Figure 2 

Figure: 3 
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I 

Figure 10 
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that the predictions of the standard model are not much better in the middle area, but levels are in 
a better agreement in the jet region. However, the standard model does not predict the second 
peak, which is qualitatively quite important. Except for this, the locations of minima and maxima 
are well predicted. Finally the great similarity in the behaviour of the turbulent field between the 
modified model and the model with variable c, should be noted with interest. 

Pressure jield 

Figures 10 and 11 show comparisons between predicted (c,=O.O45) and experimental values of 
the pressure coefficient 

along the lower and upper walls. Locations of maximum and minimum cp are in good agreement 
and the behaviours of the two curves are very similar. The slight discrepancy along the x,-axis 
does not alter the value of the pressure loss. 

CONCLUSIONS 

The previous section has considered the numerical prediction of a turbulent flow over a two- 
dimensional backward-facing step by a Galerkin finite element method. The present numerical 
investigations have proved that the GFEM is a very faithful numerical treatment which exactly 
reflects the physical phenomena when it is implemented and exploited in the standard manner. In 
the same way the penalty function approach associated with a turbulence model reveals itself to 
be as accurate as in the laminar case. 

As far as the mathematical model is concerned, we have highlighted its accuracy when it is 
associated with physical arguments. This last point becomes a very important obstacle in the case 
of an industrial use of the code. For example, it has been shown how the numerical reattachment 
length is underpredicted; this could be very prejudicial in the case of thermal problems. In the 
isothermal case this fault can be corrected with an appropriate choice of c,,. Finally the use of an 
analytical formula which relates cp to local turbulence parameters is very useful and gives 
qualitatively better results. 
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